Автономная некоммерческая организация дополнительного профессионального образования «ПРОСВЕЩЕНИЕ-СТОЛИЦА»

	ТВЕРЖДАЮ» ректор	
		С. В. Третьякова
«	»	2017 г.

Дополнительная профессиональная программа (повышение квалификации)

«Методика использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности»

Автор курса

Горнов О. А., к. ф-м. наук, доцент кафедры современных технологий в общем образовании МПГУ

Утверждено Приказом АНО ДПО «Просвещение-Столица» № 15-п от $07.06.2017~\Gamma$.

Дополнительная профессиональная программа

(повышение квалификации)

«Методика использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности»

Раздел 1. Характеристика программы

1.1. Цель реализации программы – совершенствование / формирование профессиональных компетенций обучающихся в области методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности.

Совершенствуемые компетенции

№	Компетенция	Направление подготовки 44.03.01 Педагогическое образование Квалификация Бакалавриат
		Код компетенции
1.	Способен использовать современные методы и	ПК-2
	технологии обучения и диагностики.	

1.2. Планируемые результаты обучения

№	Знать	Направление подготовки 44.03.01 Педагогическое образование Квалификация Бакалавриат Код компетенции
1.	- состав, назначение и базовые понятия оборудования	ПК-2
	инженерного класса (цифровая лаборатория Relab+);	
	– функциональную и структурную схему робота;	
	 – пиктографическое и текстовое программирование образовательных роботов; 	
	– прототипирование робототехнических устройств;	
	прототипирование рооототехнических устроиств,методику планирования и организации проектной	
	деятельности с использованием робототехнических	
	образовательных решений VEX EDR на учебных	
	занятиях в инженерных классах	
№	Уметь	
1.	- создавать робототехнические системы из образо-	ПК-2
	вательных конструктов;	
	– планировать и организовывать проектную	
	деятельность учащихся с использованием	
	робототехнических образовательных решений VEX	
	EDR на учебных занятиях в инженерных классах	

1.3. Категория обучающихся:

Учителя, физики, информатики и технологии образовательных организаций общего образования, работающие в инженерных классах, педагоги дополнительного образования в сфере политехнического образования, инженеры (технические специалисты школ).

Уровень образования – высшее образование, область профессиональной деятельности – среднее общее образование.

1.4. Форма обучения: очная.

1.5. Режим занятий: 6 часов, один раз в неделю.

1.6. Трудоёмкость программы: 36 часов.

Раздел 2. Содержание программы

2.1. Учебный (тематический) план

№	Наименование разделов	Всего часов	_	бных занятий, ных работ	Самостоя-	Формы
п/п	и тем		Лекции	Практически е занятия	тельная работа	контроля
1	Входная диагностика	1			1	
2	Методика планирования и организации проектной деятельности	2	2			
3	Робототехника. Базовые понятия. Робот	2	1	1		
4	Механика и механизмы	4	1	3		Текущий контроль (проектная работа № 1)
5	Особенности пиктографического программирования	5	1	4		Текущий контроль (проектная работа № 2)
6	Текстовое программирование в среде RobotC	6	1	5		Текущий контроль (проектная работа № 3)
7	Элементы теории автоматического управления	6	1	5		Текущий контроль (проектная работа № 4)
8	Подготовка итогового мини-проекта	6		6		Текущий контроль (мини-проект)

№	Наименование разделов	Всего часов	_	бных занятий, ных работ	Самостоя-	Формы
п/п	и тем		Лекции	Практически е занятия	работа	контроля
9	Итоговая аттестация	4		3	1	Презентация и защита мини- проектов. Итоговое тестирование
	Итого:	36	7	27	2	1

2.2. Содержание учебной программы

№ п/п	Наименование разделов и тем	Виды учебных занятий	Содержание
1.	Входная диагностика	Самостоятельная работа, 1 час	
2.	Методика планирования и организации проектной деятельности	Лекция, 2 часа	Методика планирования и организации проектной деятельности с использованием робототехнических образовательных решений VEX EDR на учебных занятиях в инженерных классах. Цель и задачи проектной деятельности. Пояснительная записка. Этапы работы над проектом. Представление проекта. Презентация проектной работы. Видео-презентация проектной работы
3.	Робототехника. Базовые понятия. Робот	Практическое занятие, 1 час	Робототехника. Базовые понятия. Робот. Функциональная и структурная схема робота. Кибернетическая система. Обратная и прямая связь. Датчики. Состав, назначение и базовые понятия оборудования инженерного класса (цифровая лаборатория Relab+) Освоение программного обеспечения цифровой лаборатории Relab+. Рассмотрение функциональных элементов. Разбор особенностей работы с датчиками. Обработка результатов измерений.
4.	Механика и механизмы	Лекция, 1 часа Практическое занятие, 3 часа	Групповая работа Механика и механизмы. Базовые понятия. Модель. Система. Энергетический и силовой подход к решению практических задач. Устойчивость. Прочность. Техническое задание и технический рисунок. Механизмы. Зубчатая, ременная и фрикционные передачи. Дифференциал. Кривошипно-шатунный механизм. Рычаг. Клин Выполнение проектной работы № 1 Создание робототехнической системы
		занятис, з часа	«Моделирование конструкций и механизмодревнего мира».

No	Наименование	Виды учебных	Содержание
п/п	разделов и тем	занятий	-
			Представление и обсуждение итогов проектной работы — созданной робототехнической системы. Оформление и описание процесса выполнения проектной работы (алгоритма разработки) и его результата. Групповая работа
5.	Особенности пиктографиче- ского програм- мирования	Лекция, 1 час	Пиктографические языки программирования. Команды действия, команды ожидания. Циклы. Ветвления. Параллельные программы
		Практическое занятие, 4 часа	Выполнение проектной работы № 2. Создание робототехнической системы «Роботыспасатели». Представление и обсуждение итогов проектной работы — созданной робототехнической системы. Оформление и описание процесса выполнения проектной работы (алгоритма разработки) и его результата. Групповая работа
6.	Текстовое программирование в среде RobotC	Практическое занятие, 5 часов	Текстовое программирование в среде RobotC. Команды действия, команды ожидания. Циклы. Ветвления. Параллельные программы Выполнение проектной работы № 3. Создание робототехнической системы «Проектирование роботов для военной промышленности». Представление и обсуждение итогов проектной работы — созданной робототехнической системы. Оформление и описание процесса выполнения проектной работы (алгоритма разработки) и его результата. Групповая работа
7.	Элементы теории авто- матического управления	Лекция, 1 час Практическое занятие, 5 часов	Элементы теории управления в робототехнике. Релейный, пропорциональный, кубический, ПИД регуляторы Выполнение проектной работы № 4. Создание робототехнической системы «Проектирование складских роботов». Представление и обсуждение итогов проектной работы — созданной робототехнической системы. Оформление и описание процесса выполнения проектной работы (алгоритма разработки) и его результата. Групповая работа
8.	Подготовка итогового мини-проекта	Практическое занятие, 6 часов	Подготовка мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности для их последующей презентации и защиты на итоговой

№ п/п	Наименование разделов и тем	Виды учебных занятий	Содержание
			аттестации. Групповая работа
9.	Итоговая аттестация	Практическое занятие 3 часа	Презентация и защита мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности.
		Самостоятельная работа 1 час	Итоговое тестирование.

Раздел 3. Формы аттестации и оценочные материалы

3.1. Оценка качества освоения дисциплины (примеры оценочных средств).

При оценивании результатов освоения применяется зачётная система. В качестве оценочных средств на протяжении курса используются:

- входная диагностика;
- текущий контроль, организованный в рамках проектных работ № 1–4;
- презентация и защита итоговых мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности;
- итоговое тестирование.

3.2. Входная диагностика

Примеры заданий входной диагностики

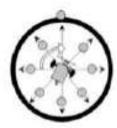
Образец текста

Уважаемые коллеги, предлагаем вам диагностические задания. Не волнуйтесь, если у вас возникнут затруднения с ответами. Это поможет вам скорректировать собственные задачи изучения учебного материала курса, а преподавателям с учётом ваших результатов более адресно и эффективно провести занятия.

Сопоставьте команду среды RobotC с ее описанием. В ответ запишите последовательность числе через дефис. Например 1-2-3-4-5-6-7-8-12-11-10-9.

a) #pragma config б) float v=50; в) int enc[1000]; r) void kalibr() д) while(nNxtButtonPressed==-1); e) task pd_control ж) while(true) sNow=SensorValue[light]; и) motor[motorB]= 50; κ) wait1Msec(1); л) for(i=100;i > 0;i--) м) nxtDisplayTextLine(); н) if(a>0) 1. Бесконечный цикл 2. Параллельная задача

6. Процедура


3. Задать скорость мотору

4. Инициализация массива

5. Считывание значение датчика

- 7. Сравнение
- 8. Вывод на экран
- 9. Ожидание нажатия кнопки
- Инициализация, переобозначение и настройка моторов, датчиков
- 11. Инициализация переменной с плавающей точкой
- 12. Цикл с параметром
- 13. Задержка

Робот ищет кегли в круге с помощью датчика расстояния, затем выталкивает их за пределы черного круга с помощью датчика освещенности и возвращается в центр круга.

Ниже приведены элементы алгоритма на псевдокоде:

- 1 Оба мотора вперед;
- 2 Оба мотора назад;
- 3 Повторяй (
- 4 Левый мотор вперед, правый мотор назад;
- 5 Жди темнее на 10;
- 6 Жди 1 секунду.
- 7 Жди расстояние ближе 45;

8-}

Запишите порядок действий по номерам, например: 367746286

3.3. Текущий контроль

Текущий контроль осуществляется в процессе выполнения слушателями системы проектных работ №№ 1—4. Форма работы — групповая.

Образовательным продуктом текущего контроля (проектные работы $N_{2}N_{2}$ 1–4) являются: созданные и представленные робототехнические системы и методические описания алгоритмов их разработки и результата.

Оценка «зачтено» выставляется в случае представления робототехнических систем и их описания.

Оценка «не зачтено» выставляется в случае, невыполнения задания. При оценке «не зачтено» слушателям предоставляется дополнительное время, которое согласовывается в индивидуальном порядке.

3.4. Итоговая аттестация

К итоговой аттестации допускаются слушатели, успешно выполнившие задания:

- текущего контроля, организованного в рамках проектных работ № 1–4;
- практического занятия (тема № 8) разработка мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности для их последующей презентации и защиты на итоговой аттестации.

Формы итоговой аттестации:

- 1. презентация и защита мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности;
 - 2. итоговое тестирование.

1 – Презентация и защита мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности

В процессе презентации и защиты мини-проекта должны быть раскрыты следующие структурные компоненты (требования):

- а) тема мини-проекта¹, его место и значение в контексте образовательной деятельности педагога, работающего в инженерном классе (методический комментарий);
- б) этапы организации проектной деятельности учащихся и ожидаемые результаты, в т.ч. описание актуальности темы, целей, задач, рабочей гипотезы;
- в) формы организации учебной деятельности и методическое обеспечение работы над задачами мини-проекта;
 - г) планируемые результаты деятельности;
 - д) критерии оценивания результатов представленного мини-проекта.

Презентация и защита мини-проекта – это его представление (регламент – 10 минут)

¹ Тему мини-проекта предлагают сами слушатели. При этом консультация педагогов, ведущих занятия, вполне допустима.

1–2 докладчиками от каждой группы (всего 5–6 групп) и последующие ответы на вопросы. Участники группы отвечают на вопросы своих коллег из других групп и модератора семинара (регламент – до 10 минут).

В рамках представления и защиты мини-проекта слушателями курсов должны быть продемонстрированы:

- владение методикой использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности;
- рефлексия способов и результатов собственных профессиональных действий;
- способность к критическому осмыслению работ, представленных коллегами.

Слушатель курсов считается аттестованным по результатам участия в итоговом занятии в соответствии с предлагаемыми критериями.

Критерии оценки разработанных материалов мини-проекта и его защиты:

«Отпично», если в предоставленных материалах учтены предложенные выше требования. Разработчиками мини-проекта продемонстрирован высокий уровень владения методикой использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности, знаниями и умениями, полученными в рамках курсовой подготовки. Работа отличается логичностью изложения материала и представляет собой практическую ценность. Разработка сопровождена подборкой приложений и мультимедийной презентацией.

«Хорошо», если предоставленные материалы мини-проекта выполнены в соответствии с вышеизложенными требованиями. Разработчиками мини-проекта продемонстрирован высокий уровень владения методикой использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности, знаниями и умениями, полученными в рамках курсовой подготовки. Но в разработках отсутствует подборка приложений и мультимедийной презентации.

«Удовлетворительно», если предоставленные материалы мини-проекта выполнены в основном в соответствии с вышеизложенными рекомендациями, но имеют замечания технологического и методического характера.

Рекомендации по организации итоговой работы – подготовке мини-проекта:

- а) слушателям курсов уже в начале обучения объявляется о задании по выполнению минипроекта и требованиях к его оформлению и презентации. На этом же этапе участникам предлагается распределиться в группы для всей последующей работы на курсах. Подобный подход позволяет приступить к осмыслению работы в контексте всей последующей курсовой деятельности;
- б) в рамках подготовки итоговой работы слушатели разрабатывают мини-проекты в группах по 4–5 человек. Всего формируется 5–6 групп для выполнения, соответственно, 5–6 разработок различных проектов;
- в) выполненные в рамках практического занятия (тема 8) мини-проекты передаются модератору курса для их предварительной оценки на соответствие формальным критериям промежуточного контроля. Положительное решение даёт возможность представить мини-проект на итоговой аттестации, отрицательное свидетельствует о необходимости доработать мини-

проект перед его защитой.

Положительное решение основывается на полном соответствии работы заданным требованиям.

Отрицательное решение основывается на частичном соответствии работы заданным требованиям. В этом случае модератор курса указывает группе слушателей, что следует доработать.

Практическая направленность образовательного продукта курсов применительно к практике представлена пакетом методических материалов по использованию робототехнических образовательных решений VEX EDR в работе учителя инженерного класса:

- методические материалы итоговой аттестации это 5—6 мини-проектов с применением методики использования робототехнических образовательных решений VEX EDR в инженерных классах в рамках проектной деятельности, разработанных слушателями курсов в групповой работе;
- методические материалы текущего контроля (см. проектные работы №№ 1–4) робототехнические системы и описания алгоритмов их разработки.

По окончании курсов каждый слушатель получает пакет методических материалов вышеуказанного содержания.

2 – Итоговое тестирование

Примерные задания итогового тестирования

Образец текста

Уважаемые коллеги, предлагаем вам задания итогового тестирования. Оценка «зачтено» выставляется в случае выполнения **не менее** 70 % заданий. Оценка «не зачтено» выставляется в случае выполнения **менее** 70 % заданий.

Укажите скорости моторов через 9 секунд после начала работы программы. task main() int v1=100, v2=0; for(int 1=0; 1<70; 1++) v2=v2+1; motor[motorB]=v1; motor[motorC]=v2; wait1Msec(10); wait1Msec(4000); motor[motorB]=motor[motorC]=0; Мотор В Мотор С Как будет выглядеть траектория? спираль окружность эллипс прямоугольник

	подразумевается под словосочетанием «значение серого»?
	величина, выдаваемая датчиком освещенности, если робот рит на границе черного и белого
0	величина, которая подается на моторы
0	величина начальной скорости робота
Запа	ние 3
Что	«видит» датчик освещенности при движении робота с черного белое?
Что	«видит» датчик освещенности при движении робота с черного
Что	«видит» датчик освещенности при движении робота с черного белое?

Укажите причины, по которым стандартная двухмоторная тележка с программой движения по линии на пропорциональном регуляторе с двумя датчиками освещенности едет не совсем прямо на белом поле.

□ Динамическая ошибка
□ Статическая ошибка
□ Используются различные типы датчиков
■ Датчики не идеальны и при изготовлении немного отличаются друг от друга
□ Разные передачи в моторах
Задание 5
Задание 5 1. Помогает при резком изменении ошибки.
1. Помогает при резком изменении ошибки.
 Помогает при резком изменении ошибки. Добавляет вязкость в движения робота.

увеличение коэффициента регулятора

увеличение начальной скорости робота

Слушатель курсов считается аттестованным, если им получены оценки «зачёт» как по результатам представления и защиты мини-проекта (групповая работа), так и по результатам итогового тестирования (индивидуальная работа).

Раздел 4. Организационно-педагогические условия реализации программы

4.1. Учебно-методическое и информационное обеспечение программы

Литература:

- 1. Бишоп О. Настольная книга разработчика роботов. М.: МК-Пресс, СПб.: «Корона», 2010. 400 с., ил.
- 2. Вильямс Д. Программируемый робот, управляемый с КПК / пер. с англ. А.Ю. Карцева. М.: HT Пресс, 2006.
- 3. Воротников С.А. Информационные устройства робототехнических систем. М.: МГТУ им. Н.Э. Баумана, 2006.
- 4. Жимарши Ф. Сборка и программирование мобильных роботов в домашних условиях. M.: HT Пресс, 2007.
- 5. Корендясев А.И. Теоретические основы робототехники. Книга 1. М.: Наука, 2006.
- 6. Корендясев А.И. Теоретические основы робототехники. Книга 2. М.: Наука, 2006.
- 7. Мамичев Д. Роботы и игрушки своими руками. М: СОЛОН Пресс, 2017. –196 с.

Интернет-ресурсы:

- 1. http://минобрнауки.рф/документы/543.
- 2. http://profil.mos.ru/inj.html#/ проект «Московский инженерный класс».
- 3. http://fcior.edu.ru федеральный центр информационно-образовательных ресурсов.
- 4. http://labtrain.ru/labsoft учебное оборудование.
- 5. http://school-collection.edu.ru/catalog/search Единая коллекция цифровых образовательных ресурсов.
- 6. http://univertv.ru образовательный видео-портал с лекциями преподавателей университетов.
- 7. http://window.edu.ru единое окно доступа к информационным ресурсам, в том числе оцифрованным книгам.

4.2. Материально-технические условия реализации программы

Материально-техническое обеспечение:

- Аудитории с оборудованием для инженерного класса.
- Компьютерные и технические средства обучения для работы с презентационными материалами, документами и материалами в электронном виде: мультимедийная установка, экран, компьютер с выходом в Интернет.
- Учебно-методические материалы (в т.ч. презентационные), раздаточный материал для слушателей по всем темам учетного плана для всех видов предлагаемых работ.
- Аудитории для проведения фронтальной и групповой работы.

Программное обеспечение современных информационно-коммуникационных технологий:

- Системное прикладное программное обеспечение (операционные системы, антивирусы, программы для обслуживания телекоммуникационных сетей).
- Программное обеспечение RobotC.
- Прикладное программное обеспечение для работы с датчиковыми системами RELAB.

4.3. Образовательные технологии, используемые в процессе реализации программы

В процессе реализации программы используются лекции с элементами обсуждения проблем, дискуссии, информационно-коммуникационные технологии, технологии проектно-ориентированного обучения.